
XML Fragments extended with database operators

Yosi Mass, Dafna Sheinwald, Benjamin Sznajder & Sivan Yogev
IBM Research Laboratory in Haifa

Haifa 31905, ISRAEL
{yosimass, dafna, sivany, benjams}@il.ibm.com

Abstract

XML documents represent a middle range between unstructured data such as textual documents and fully structured
data encoded in databases. Typically, information retrieval techniques are used to support search on the
“unstructured” end of this scale, while database techniques are used for the structured part. To date, most of the
works on XML query and search have stemmed from the structured side and are strongly inspired by database
techniques. In a previous work we described a new query approach via pieces of XML data called “XML
Fragments” which are of the same nature as the queried XML documents and are specifically targeted to support the
information needs of end-users in an intuitive way. In addition to its simplicity, XML Fragments represent a natural
extension to traditional free text information retrieval queries where both documents and queries are represented as
vectors of words and as such it enables a natural extension of IR ranking models to rank XML documents by context
and structure. In this paper, we extend XML Fragments with database operators thus allowing both IR style
approach together with database “structured” query capabilities.

Introduction

XML documents became quite popular in the last few years as a way to add semantic
information to data. Consequentially numerous XML collections have emerged such as
Medline1 for medical data, IEEE2 Journals, Wikipedia3 and more. Envisioning more and more
such collections, researches started to investigate new methods for XML Retrieval. Since XML
documents are regarded as semi-structured, research for XML retrieval is dominated by “data”
centric query languages from one hand and “document” centric IR approaches from the other
hand (Fuhr & GrossJohan, 2001).

To date, as (Broder, 2002) observed, most of the work on XML query and search has stemmed
from the database communities and from the information needs of business applications, as
evidenced by existing XML query languages such as W3C's XPath (XPath, Berglund et. al.,
2003) and XQuery (XQuery; Boag S. et. al. 2003), which are strongly inspired by SQL
(Chamberlin & Boyce, 1974). Lately the XQuery community realized the need to add more free
text features to their data centric query language and the result was XQuery-FT (XQuery-FT,
2006) which adds Full Text capabilities to XQuery.

In a previous work we presented XML Fragments (Broder et. al., 2004) as a different approach
for XML retrieval, motivated by document centric needs. Our motivation was to define a simple
yet powerful language that can be a natural extension of queries on Full text to queries on XML.
XML Fragments further followed the QBE (Query By Example) paradigm (Zloof, 1977) where
pieces of XML Fragments are used for querying XML collections. This allowed a natural
extension of ranking methods from classical IR to the XML domain. In (Broder et. al., 2004) we

1 http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed
2 http://www.ieee.org/portal/site
3 http://en.wikipedia.org/

Conference RIAO2007, Pittsburgh PA, U.S.A. May 30-June 1, 2007 - Copyright C.I.D. Paris, France

described XML Fragments as pieces of well formed XML extended with some operators such
as Phrase and +/- prefix on text and structure to allow more user control for defining her needs.

This model still been a document centric approach proved to be quite powerful in many
applications. For example, in the INEX Initiative for the Evaluation of XML retrieval (INEX
2002-2006) queries are expressed as NEXI which is an XPath extended with the “about”
predicate (Trotman & Sigurbjörnsson, 2004). We translated all those queries to XML
Fragments and achieved top results using an implementation of XML Fragments (Mass et. al.,
2002). Recently, another work by Chu-Carroll (Chu-Carroll et al., 2006) built a full system of
Question Answering using the semantic capabilities of XML Fragments.

XML Fragments were recently implemented in real Search Engines, like IBM’s Lotus
Worksplace4, or OmniFind5. While used in several engines we got some requirements for
strengthening XML Fragments with typical database operators. Those included support for full
Booleans (and/or), better control on the XML document structure and in particular on
father/child relation and better discrimination between queries on attributes vs. queries on XML
tags.
In this paper we take XML Fragments one step further and add some database like operators to
the language. We still keep the intuitive and query by example paradigm that characterizes
XML Fragments but with more data centric features. This new XML Fragments model allows
database features for exact matches from one hand, while supporting all powerful IR ranking
and fuzziness from the other hand. We believe that this is a unique approach since we start with
an IR like query and strengthen it with database query capabilities while other approaches like
XQuery-FT or XIRQL (Fuhr N. & GrossJohann, 2001) start from a full structured SQL like
query and add some Full Text capabilities to it.

The rest of the paper is organized as follows: in the next section we describe the syntax and give
some examples of the new added operators and in the followed section we formally define the
semantics of the extended language. We then describe an implementation of the full language
on top of the Lucene search library. We conclude with summary and future directions.

XML Fragment – a powerful IR language

The formal syntax and semantics of XML Fragments is fully defined by (Broder et al., 2004)
while, here, we give only a short summary. Our main motivation in defining XML Fragments is
to extend classical IR system in which the query and the document collection both consists of
free text. We claim that the same can hold for XML collections and we suggest querying XML
documents via pieces of XML documents or “XML Fragments” of the same nature as the
documents that are queried. Returned results should be not only perfect matches but also
“close enough” ones ranked according to some measure of relevance. XML Fragments are thus
portions of valid XML, possibly combined with free text. For example, the following are valid
XML Fragments:

1. <element1 id=”123”> text1 text2 <element2> … </element2></element1>
2. <element>…</element> <element>…</element>
3. <element>…</element> text1 <element>…</element>
4. text1 text2 text3

4 http://www-142.ibm.com/software/workplace/products/product5.nsf/wdocs/homepage
5 http://www.ibm.com/software/data/enterprise-search/omnifind-enterprise/

Conference RIAO2007, Pittsburgh PA, U.S.A. May 30-June 1, 2007 - Copyright C.I.D. Paris, France

Since XML Fragments can have more than one root element, we add a dummy <root> element
that wraps the whole query to get a well formed XML data. We can look at the XML query as a
tree where each node is either an XML tag or a word. Intuitively the semantics of XML
Fragments query Q is that a document D is a valid result for Q (or that Q is satisfied by D) if we
can find a path from Q’s root to one of its leaves that fully appears in D.

In order to allow more user control on XML Fragments and at the same time still keep their
simple intuitive syntax, we augmented in (Broder et al, 2004) the XML Fragments with the
following symbols:

� “+/-” prefix that can be added to elements, attributes or content. Prefixing an element
with a “+” operator means that the Query subtree below that element should be fully
contained in any retrieved document. Prefixing an element with “–” means that the
Query sub tree below that element, should not exist in any retrieved document.

� “…” (Phrase) to enclose any free text part of the Query between quotes (“”) so as to
support phrase match.

� Relation terms – for parametric search. For example, the query:
<book><year><.gt> 2000 </.gt></year></book>

will return all books that were published after year 2000.
� Empty tag – serves as a kind of parenthesis <> … </> to group some query nodes

together.

Extending XML Fragments with database operators

As described above, while deploying XML Fragments in some domains we got requirements
for more database oriented features. We describe below the syntax we used for adding those
requirements to XML Fragments and the full semantics of the extended language. Our design
principle was to keep the nature of XML Fragments as an intuitive Query By Example paradigm
so we added all the new extensions following this paradigm.

Boolean operators

In (Broder et. al., 2004) we showed how the association of the + operator and the parenthesizes
<>…</> gave the user the ability to express any Boolean constraints:

� The OR constraint between two contiguous fragment was obtained by default.
� AND constraint was achieved by the ‘+’ operator.
� Complex full Boolean constraints were expressible by the introduction of the

parenthesizes <>…</>.

While a default OR semantics between query terms is appropriate for IR usage as evident by
(Holscher et. al., 2000; Jansen et. al., 2000), it turned out that in most search applications a
default AND is assumed between fragments (Notess, 2003). To satisfy both worlds we added
explicit AND/OR Booleans to XML Fragments while the semantics for an implicit set of
terms/fragments is left to be implementation dependant.

Conference RIAO2007, Pittsburgh PA, U.S.A. May 30-June 1, 2007 - Copyright C.I.D. Paris, France

Definition 1 (booleans): an AndTerm is an XML node of the form
<.and>Q</.and> and an OrTerm is an XML node of the form <.or>Q</.or>
where Q is an XML Fragments expression.

The semantics of an AndTerm is that all its children should exist in a returned Document while
the semantics of an OrTerm is that it is enough that a single child will appear in a returned
Document. The formal semantic is given in the sequel. We give now some examples.

Examples

All examples refer to the two XML documents Doc1 and Doc2 in Figures 1 and 2 respectively.

<Library>
 <Book isbn=”1234”>
 <Title>Art of computer</Title>
 <publication year=”1968”/>
 <fm>

 <Author>
 <first>Donald</first>
 <last>Knuth</last>

 </Author>
 <Publisher>

 Addison-Wesley
 <State>Massachusetts</State>
 </Publisher>

</fm>
 </Book>
</Library>

Figure 1 - Doc1

<Library>
 <Book>

<isbn>1234</isbn>
 <Abstract>Setting of attributes for introducing databases </Abstract>
 <Title>Graph theory</Title>
 <publication year=”1985”/>

<Author>
 <first>Donald</first>
 <last>Knuth</last>

</Author>
 <Author>
 <first>Roland</first>
 <last>Graham</last>

</Author>
 </Book>
</Library>

Figure 2 - Doc2

The XML Fragment in Figure 3 below will retrieve Doc2 and not Doc1. The reason is that the
<.and> operator requires that the two <Author> children should both exist. This is true only
in the second Doc. and not in the first one.

Conference RIAO2007, Pittsburgh PA, U.S.A. May 30-June 1, 2007 - Copyright C.I.D. Paris, France

<Book>
 <.and>
 <Author> Donald Knuth </Author>
 <Author> Roland Graham </Author>

</.and>
</Book>

Figure 3 - AND operator

Note that the two terms under each Query <Author> tags are interpreted using the default
semantics of the implementing Search Engine. So an implementation that assumes default
AND semantics will return only authors that have both Donald and Knuth for the first author
and Ronald and Graham for the second author. Another implementation that assumes default
OR semantics will return papers that have two authors (because of the <.and> tag) but it can
also return a paper in which the first author is “Gerald Knuth” since its enough that the
<Author> tag will be Donald or Knuth.

The XML Fragment in Figure 4 below will retrieve both Doc1 and Doc2. The reason is that the
<.or> operator requires only a single <Author> child to appear which is true for both Doc1
and Doc2 both having the <Author> Donald Knuth.

<paper>
 <.or>
 <Author> Donald Knuth </Author>
 <Author> Roland Graham </Author>

</.or>
</paper>

Figure 4 - OR query

The example in Figure 5 below shows a combination of ‘+’ operator and Booleans. It will
retrieve only Doc2 since the ‘+’ prefix on the first <Author> mandates that this Author in a
matched document must exist.

<paper>
 <.or>
 +<Author> Roland Graham </Author>
 <Author> Donald Knuth </Author>

</.or>
</paper>

Figure 5 – Combination of Booleans and ‘+’

Queries on attributes

In the base XML Fragments (Broder, 2004; Mass et al., 2002), we supported queries on
attributes using the XML syntax for attributes e.g. <book isbn=”1234”/>. However as stated in
(Broder 2004) –

“To simplify our notation we represent attributes as child elements, and thus the query
"<book isbn=”1234”/> " is equivalent to "<book><isbn>1234</isbn></book>"

The query <book isbn=”1234”/> would return so both Doc1 and Doc2 as they both have either
a book attribute isbn=”1234” (Doc1) or a child tag <isbn> with value 1234 (Doc2). The
motivation was that from an IR perspective there is no much difference between an attribute

Conference RIAO2007, Pittsburgh PA, U.S.A. May 30-June 1, 2007 - Copyright C.I.D. Paris, France

child and a tag child. However from a Database perspective mainly in business-to-business
applications, it is crucial to express explicit constraints precisely on attributes and not on tag
children. XPath (XPath; Berglund et. al., 2003), for example, support queries on attributes
using the @ prefix. For example, the XPath query //book[@isbn=’1234’] will select Doc1
which has an attribute named isbn with a value ‘1234’ but will not select Doc2 even though it
has a child ‘isbn’ tag containing the value ‘1234’.

In this paper we sharpen the definition of attribute queries to match only attributes and not
children with same name.

Examples

The query

 <book isbn="1234"/>

will return only Doc1 and not Doc2 since in Doc2 “isbn” appears as a child tag of <book> and
not as an attribute.

To support parametric constraints over numeric attributes we enable the following relation
operators (<, >, <= and >=) on attributes. For example, the query:

 <book>
 <publication >= “1985”/>
 </book>

will return only Doc2 and not Doc1 since this query retrieves only books whose publication date
was after 1985.

The depth operator

One key design element in our base XML Fragments was to allow fuzziness in the query. This
was motivated by IR needs of users that don’t know the exact structure of the queried collection.
One such assumption was that we do not distinguish between a direct child and a descendant
child. For example, the query:

<book>
 <Author> Donald Knuth </Author>
</book>

would return books authored by “Donald Knuth” regardless to the depth of the <Author> tag
under the <book> element in the original document.

This relaxation was found insufficient for database oriented applications. It should be noted that
in a database language like XPath, hierarchy constraints can be expressed by either a single
slash (/) or a double slash (//). The XPath query C1/C2 matches documents with node C2 a
direct child of node C1 while the query C1//C2 matches documents with node C2 a descendant
of node C1. More complex constraints may be defined like C1/./C2 that matches a node C2
two levels under C1 etc.

To add such functionality to XML Fragments we add a new depth operator:

Conference RIAO2007, Pittsburgh PA, U.S.A. May 30-June 1, 2007 - Copyright C.I.D. Paris, France

Definition 2 (depth): a DepthTerm is an XML node of the form <.depth
value=”$n”>Q</.depth>, where $n is a positive value and Q is an XML
Fragments expression.

A query with two nested tags separated by a <.depth value = “$n”> tag will retrieve only
documents in which the two requested tags are separated by $n levels while a query with two
nested tags without any depth tags do not distinct between direct child or a descendant. This
new syntax emphases our general guideline to have XML like syntax of simple IR oriented
language with advanced operators that fit application or database oriented needs.

Examples

The query in Figure 6 will retrieve Doc2 and not Doc1 since only in Doc1 the tags <book> and
<Author> are separated by 2 levels while in Doc2 <Author> is a direct child of <book>.

<book>
 <.depth value = “2”>
 <Author> Donald Knuth </Author>

</.depth>
</book>

Figure 6 – Depth query

A more sophisticated example is given in Figure 7 involving nested depth tags combined with
Booleans. The query below will retrieve Doc1 since it has <book> and <Author> tags
separated by 2 levels and the <State> tag appears 3 levels below the <book> tag which is the
sum of the 2 <depth> expression in the query.

<book>
 <.depth value = “2”>
 <.and>
 <Author> Donald Knuth </Author>
 <.depth value = “1”>
 <State> Massachusetts </State>
 </.depth>
 </.and>

</.depth>
</book>

Figure 7 – Depth query with Boolean tags

Target Element

An advantage of queries on XML collection over traditional IR is that the granularity of
returned results can be elements inside a document instead of full documents. This may be
crucial in very large documents where retrieval of the whole document is useless. We denote
those returned elements as target elements. In our previous paper (Broder et al., 2004) we left
the definition of target elements for future work; we complete the definition here. To let the
user define the target element, we introduce a new operator #:

Definition 3 (target element): a TargetElement is an XMLTerm (An XML node
with a real tag name e.g. <book>) prefixed by #.

Conference RIAO2007, Pittsburgh PA, U.S.A. May 30-June 1, 2007 - Copyright C.I.D. Paris, France

Preceding a query tag name by the # symbol marks it as a candidate to be returned by the query.

Examples

The query in Figure 8 below will return the first <Author> tag from both Doc1 and Doc2 from
Figures 1 and 2 respectively.

<book>
 <#Author> Donald Knuth </#Author>
</book>

Figure 8 – Target element

A more sophisticated and “database oriented” query is given in Figure 9: the query will retrieve
the titles of the books authored by Donald Knuth.

<book>
 <Author> Donald Knuth </Author>
 <#title/>
</book>

Figure 9 – Target element

The mechanism to return the matched target elements is implementation dependant. In INEX,
for example, the target element is returned by the XPath expression that leads to that element.
Other implementation may choose to return for example an offset of the target elements in the
XML document (Mass & Mandelbrod, 2004).

The above target element definition is much powerful than its equivalent in XPath where the
target element is implicitly the last node of the query path. Our new definition allows to define
any query tag and a multiplicity of them as target elements.

Semantic of XML Fragment Query

In this section we formulate the conditions by which a given document is said to satisfy a given
XML Fragment query. We use the XML Document Object Model (DOM, 2004) that represents
any XML document as a tree and same for the Query. For the documents to search we use the
notation <s> to represent an arbitrary element name e.g., <Author>, and xs to denote a
particular instance of <s> in a document which is represented by the unique XPath that leads to
that instance of <s>, e.g. /Book[1]/Author[1]. We use xs in order to define the notion of
components as stated in Definition 4.

Definition 4 (component): Let D be an XML Document and <s> an element name.
Let S = { xs | <s> exist in D } the set of all instances of <s> in D. For each xs � S,
we define the component Dxs as the subtree of D whose root is the element <s> and
is uniquely identified by xs. The entire document D is identified by its topmost
element and for sake of simplicity we refer to it as Dx .

For example in Doc1 from Figure 1 above, we have <Author> as an element name and
S={/library[1]/book[1]/fm[1]/author[1],/library[1]/book[1]/fm[1]/author[2]} its corresponding
component instances.

Conference RIAO2007, Pittsburgh PA, U.S.A. May 30-June 1, 2007 - Copyright C.I.D. Paris, France

Definition 5 (nesting): Let Dxs be a component uniquely identified by xs. We
define nest(Dxs), the nesting of the component Dxs, as the length of the XPath
expression xs identifying it. We define by length of an XPath expression, the
number of the nodes involved in it.

We define now the concept of satisfiability for a Query as follows. Let Dxs be a document
component and Q = (t1, …, tn) be a query. To simplify our notation, we refer to a single text
term by WordTerm and to a phrase by a PhraseTerm. We then distinguish between XMLTerm
(a term with a real tag name e.g. <book>), AndTerm, OrTerm, DepthTerm and RelationTerm.
We verify whether a given query Q is satisfied by a given document component Dxs recursively
by using the function Check_satisfiability, which is abstracted in pseudo-code in Figure 10
below.

Figure 10 - query satisfaction

Figure 10 – Check_satisfiability method

Check_satisfiability(Q, Dxs) :

1. if (Q is empty) return true;
2. if (Q=(t1) and t1 is a WordTerm with no +/- prefix): if t1 appears in the content of some node

in Dxs then return true; otherwise return false;
3. if (Q=(t1) and t1 is a PhraseTerm with no +/- prefix): if all the phrase’s words appear

consecutively in the content of some node in Dxs then return true; otherwise return false;
4. if (Q=(t1) and t1 is an AndTerm with no +/- prefix) : let t1= <.and>u1,…,uk</.and>; if for each

ui, Check_Satisfiability(ui, Dxs) = true, then return true; otherwise return false;
5. if (Q=(t1) and t1 is an OrTerm with no +/- prefix) : let t1= <.or>u1,…,uk</.or>; if ther exist ui

such that Check_Satisfiability(ui, Dxs) = true then return true; otherwise return false;
6. if (Q=(t1) and t1 is a DepthTerm with no +/- prefix (*)) : let t1= <.depth val=“n”>Q’</.depth>;

if there exist some element <s’> in Dxs such that nest(Dxs) + n = nest(Dxs’) and
Check_Satisfiability(Q’, Dxs’) = true then return true; otherwise return false;

7. if (Q=(t1) and t1 is an XMLTerm with no +/- prefix) let t1= <s’>Q’</s’>; if there exists some
element <s’> in Dxs such that Check_satisfiability(Q’, Dxs’)=true then return true ; otherwise
return false;

8. if (Q=(t1) and t1 is an XMLTerm with an attribute with no +/- prefix) : let t1= <s’
att=”val”>Q’</s’>; if there exists some element <s’ att=”val”> in Dxs such that
Check_satisfiability(Q’, Dxs’)=true then return true ; otherwise return false;

9. if (Q=(t1) and t1 is a RelationTerm with no +/- prefix) : if Dxs is of the form <s>val1<s> and
val1 is a number then
If t1 = <.gt.>Val</.gt.> and Val1 > Val then return true
Else If t1 = <.ge.>Val</.ge.> and Val1 � Val then return true;
Else If t1 = <.lt.>Val</.lt.> and Val1 < Val then return true
Else If t1 = <.le.>Val</.le.> and Val1 � Val then return true;
Otherwise return false;

10. if (Q=(t1,…,tn), n>1) : let Q+ be all the "+" terms (with the "+" removed), Q- all the "-" terms
(with the "-" removed) and Qo the rest of the terms.

 If (for each ti Q- we get Check_satisfiability(Q=(ti), Dxs) = false and
 for each ti Q+ we get Check_satisfiability(Q=(ti), Dxs) = true) and
 for Q0 we either apply AND semantics or we apply OR semantics and we get true)
 return true;
 Otherwise return false;

Conference RIAO2007, Pittsburgh PA, U.S.A. May 30-June 1, 2007 - Copyright C.I.D. Paris, France

(*) For ease of reading we assume that a DepthTerm can have only a single XMLTerm node.
This assumption can be relaxed and then we need to modify the pseudo code above to recurse
over a set of potential {Dxs} elements in the desired depth.

Semantics of a Target Element

Once a document D is proved to satisfy a query Q we can find all the occurrences of its Target
Elements. These occurrences are defined as follows: Let t be a target element in the query (i.e.,
it appears as <#t> in the query text), and let T = {xt} be the set of all instances of <t> in
document D. An instance xt in T is called an occurrence of target element t, if there is a proof
that document D satisfies query Q, a proof in which xt participates as an XMLTerm, i.e., by
virtue of item 7 of Check_satisfiability().
In a less formal way, we can say that xt is an occurrence of target element t, if xt participates in
an occurrence, within document D, of the query twig associated with query Q.

A reference implementation of XML Fragments

We describe now an example implementation of XML Fragments in the popular open source
Apache Lucene6 search engine library which was originally written in Java, and is now
available in various programming languages. In order to allow XML Fragment queries over
Lucene, it was necessary to implement three components:

1. An XML parser which indexes XML documents both their textual and structural data
into an inverted index.

2. An XML Fragment query parser,
3. A Runtime search algorithm to evaluate XML Fragment queries.

We have implemented these components in Java, and will hereby describe some aspects of the
query parser implementation. The indexing and the runtime search algorithm are outside the
scope of this paper, and will therefore not be described.

The tree structure of the XML Fragment is implemented using Lucene’s BooleanQuery7
class: all internal nodes of the XMLFragment query are BooleanQuery objects. Each
BooleanQuery object contains an array of sub-queries (BooleanClause8 objects), where
each clause is either a nested BooleanQuery object, or another Lucene Query. Boolean
constraints in the query are implemented using BooleanQuery as described below, while
tags and attributes extend it by keeping an additional encapsulated Query object with the tag or
attribute name.

An important characteristic of a clause in a BooleanQuery is its occurrence state, which can
be MUST, MUST_NOT or SHOULD. The first two states correspond naturally to our +,-
symbols. In addition, the BooleanQuery has a minimal number of SHOULD clauses that
must be satisfied. XML Fragments Boolean nodes can be thus implemented as follows:

6 http://lucene.apache.org/java
7 http://lucene.apache.org/java/docs/api/org/apache/lucene/search/BooleanQuery.html
8 http://lucene.apache.org/java/docs/api/org/apache/lucene/search/BooleanClause.html

Conference RIAO2007, Pittsburgh PA, U.S.A. May 30-June 1, 2007 - Copyright C.I.D. Paris, France

� AND is a BooleanQuery with all contained clauses assigned MUST,
� OR is a BooleanQuery with all contained clauses assigned SHOULD, and the

minimal number of SHOULD clauses that must be satisfied set to 1.
� Tag or Attribute are BooleanQuery with contained clauses assigned MUST or

SHOULD according the modifier +/- preceding them and the default semantic of the
search engine.

Our implementation of the XML Fragment parser encapsulates a Lucene query parser (given
upon construction of the XML Fragment parser), which is used in two different contexts:

� As mentioned above, Lucene supports queries with either AND or OR semantics. The
encapsulated Lucene query parser comes with a default operator which can be either
AND or OR, and the semantic of the XML Fragment parser is set according to this
operator.

� The textual parts of the XML Fragment query are parsed by the Lucene query parser, and
the returned Lucene query is processed by the XML Fragment parser and added to its
query tree.

Using OR semantic, the XML Fragment query parser will therefore parser the query q given in
Figure 11 below:

<book year = 1968>
 +<Author> Donald Knuth </Author>
 <.depth value = “1”>
 <title> "art of computer" </title>
 </.depth>
</book>

Figure 11 – Query q

into the following query:

Contains BooleanQuery(minimum=0), ElementQuery:"book"

 MUST Contains BooleanQuery(minimum=1), ElementQuery:"author"

 SHOULD TermQuery:"Donald"

 SHOULD TermQuery:"Knuth"

 SHOULD Contains(Depth=1) BooleanQuery(minimum=1), ElementQuery:"title"

 SHOULD PhraseQuery:"art of computer"

 SHOULD Contains BooleanQuery(minimum=0), AttributeQuery:“year”

 MUST TermQuery:"1968"

The usage of Lucene’s existing query parser in free-text parsing complies with the notion of
XML Fragments being an extension of free-text queries, in that the XML Fragment query parser
has special treatment only to the structural parts of the query. We further elaborate this notion in
cases where the query contains only free-text without structural limitations. In such cases the
XML Fragments parser does not change the query, and the runtime algorithm uses the native
Lucene query when scoring and ranking documents.

Another important benefit gained from using Lucene’s query parser is the easy addition of
features to the free-text part of XML Fragment syntax definition given above. Two examples
that we implemented are wildcard queries and fuzzy queries, but every existing or future Lucene
query type can be added. In fact, similar to the definition of the default semantic, the free-text

Conference RIAO2007, Pittsburgh PA, U.S.A. May 30-June 1, 2007 - Copyright C.I.D. Paris, France

portion of XML Fragments can be search engine dependent, supporting all features of the search
engine query syntax.

Conclusion and future works

We presented XML Fragments as a query paradigm for document centric XML retrieval and
extended it with some database oriented operators. This approach matches the general attempt
to narrow the gap between search and retrieval capabilities over unstructured, semi-structured
and structured data. (Raghavan & Garcia-Molina, 2001). Our approach is quite unique in the
sense that we start from IR oriented query and add database oriented operators to it while other
known approaches such as XQuery-FT start from a database oriented query language and add
Full Text capabilities to it. The resulted XML Fragments query is still intuitive and follow the
Query By Example paradigm for a novice user yet it keeps the same structure for the advanced
added database oriented operators.
As a next step we plan to complete the Lucene based implementation of XML Fragments and
deploy it in several IR and database oriented applications. Based on user feedback we will
consider adding more operators to the language.

References

Berglund A. , Boag, S. ,Chamberlin D. , Fernandez M.F. ,Kay M. , Robie J. & Simeon J. (2003). "XML
Path Language (XPath) 2.0 . W3C Working Draft, 12 Nov 2003. See http://www.w3.org/TR/xpath20/
Boag S. , Chamberlin D. , Fernandez M.F. , Florescu D. , Robie J. & Simeon J. (2003). "XQuery 1.0: An

XML Query Language", W3C Working Draft, 12 Nov 2003. See http://www.w3.org/TR/xquery/
Broder A. (2002). A taxonomy of Web search, SIGIR Forum, 36:2, Fall 2002.
Broder A., Maarek Y.S, Mandelbrod M & Mass Y. “Using XML to Query XML – From Theory to

Practice”. In Proceeding of RIAO, 2004
Chamberlin D., Boyce R. “SEQUEL: A structured English query language”, Proceedings of the ACM

SIGFIDET (now SIGMOD) workshop on Data description, access and control, 1974.
Carmel D. , Maarek Y. , Mandelbrod M. , Mass Y. & Soffer A.(2003). "Searching XML Documents via

XML Fragments". In the Proceedings of SIGIR' 2003, Toronto, Canada, Aug. 2003.
Chu-Carroll J, Prager J, Czuba K, Ferrucci D & Duboue P (2006). “Semantic Search via XML

Fragments: A High-Precision Approach to IR”. In the Proceedings of SIGIR’ 2006, Seattle,
Washington, Aug. 2006.

DOM (2004). Document Object Model http://www.w3.org/DOM/
Fuhr N. & GrossJohann K. (2001). “XIRQL: A Query Language for Information Retrieval in XML

Documents”. In Proceedings of SIGIR’2001, New Orleans, LA, 2001
Fuhr N. & GrossJohann K. (2001). “XIRQL: A Query Language for Information Retrieval in XML

Documents”. In Proceedings of SIGIR’2001, New Orleans, LA, 2001
Holscher C., Strube G. (2000) “Web search behavior of Internet experts and newbies” In International

Journal of Computer Networks, Volume 33, 1-6, 337-346, June 2000
INEX. Initiative for the Evaluation of XML Retrieval, 2002-2206,

http://inex.is.informatik.uni-duisburg.de/
Jansen B.J., Spink A. & Saracevic T. (2000) “Real life, real users and real needs: A study and analysis of

user queries on the Web”. In Information Processing & Management. Volume 36, 207-227
Mass Y., Mandelbrod M., Amitay E., Carmel D., Maarek Y. & Soffer A. (2002). "JuruXML - an XML

Retrieval System". In Proceedings of INEX'02, Schloss Dagstuhl, Germany, Dec. 2002
Mass Y. & Mandelbrod M. , Component Ranking and Automatic Query Refinement for XML Retrieval,

Advances in XML Information Retrieval, LNCS 3493, INEX 2004, Dagstuhl Germany, December
2004, pg. 73-84

Notess G.R. (2003) “Search Engine features chart”. http://searchengineshowdown.com/features/
Raghavan S. & Garcia-Molina H (2001)., “Integrating diverse information management systems: A

brief survey”. In IEEE Data Engineering Systems. Volume 24(4): 44-52 – 2001
Trotman A. & Sigurbjörnsson B. “Narrowed Extended XPath I”. In Proceedings of the INEX 2004

Workshop, 2004
XPath – XML Path Language (XPath) 2.0, http://www.w3.org/TR/xpath20/

Conference RIAO2007, Pittsburgh PA, U.S.A. May 30-June 1, 2007 - Copyright C.I.D. Paris, France

XQuery – XML Query (XQuery), http://www.w3.org/XML/Query/
XQuery-FT - XQuery 1.0 and XPath 2.0 Full-Text, W3C Working Draft 1 May 2006,

http://www.w3.org/TR/xquery-full-text/
Zloof M. (1977). Query by example. IBM Systems Journal, 16(4):324-343, 1977)

Conference RIAO2007, Pittsburgh PA, U.S.A. May 30-June 1, 2007 - Copyright C.I.D. Paris, France

Appendix A - Query Syntax for extended XMLFragment.
We assume that the reader is familiar with XML and we give now a formal definition of the Extended
XML Fragments. We use V* or (V)* to denote a sequence of zero or more items of type V . V? or (V)? to
denote a sequence of exactly zero or one items of type V, and V+ or (V)+ to denote a sequence of one or
more items of type V.

XMLFragment ::= (XMLTerm* PhraseTerm* WordTerm* BooleanTerm*)*

XMLTerm9 ::= Space Operator? Stag Content Etag | Space Operator?StagNoBody
BooleanTerm ::= Space Operator? SBool Content EBool
PhraseTerm ::= Space Operator?Phrase
WordTerm ::= Space Operator?Word

Content ::= RXMLFragment* � RelationTerm*
RXMLFragment ::= SDepth? 10 XMLTerm EDepth? | PhraseTerm | WordTerm | BooleanTerm
RelationTerm11 ::= Space Operator?SRelation Number ERelation

Operator ::= Plus | Minus
Plus ::= ‘+’
Minus ::= ‘-‘
Word12 ::= Sequence of zero or more characters without white spaces
Number ::= A real number
Phrase ::= Quote (Word Space)* Word Quote

Stag ::= StartTag TagContent CloseTag
TagContent ::= TargetElement? TagName Space (Attribute Space)*

STagNoBody ::= StartTag TagContent CloseTagNoBody
Etag ::= EndTag TagName CloseTag

SBool ::= StartTag BooleanTag CloseTag
Ebool ::= EndTag BooleanTag CloseTag
BooleanTag ::= AndTag | OrTag
AndTag :;= ’.and’
OrTag ::= ’.or’

SDepth ::= StartTag DepthStr = ’Int’ CloseTag
EDepth ::= EndTag DepthStr CloseTag
DepthStr ::= ‘.depth’
Int ::= A positive integer value

SRelation ::= StartTag RelationName CloseTag
ERelation ::= EndTag RelationName Space* CloseTag
TagName13 ::= Word
RelationName ::= Greater | GreaterEqual | Less | LessEqual

Attribute ::= Operator?Word Equals Phrase | Operator?Word RelationOperator Number

RelationOperator ::= ‘=’ | ‘>=’ | ‘<=’ | ‘>’ | ‘<’
TargetElement ::= ‘#’

9 To have a well formed XML fragment the TagName in Stag and Etag must be equal
10 To have a well formed XML fragment the SDepth must be followed by an EDepth
11 To have a well formed XML fragment the RelationName in SRelation and ERelation must be equal
12 For simplicity we use an intuitive definition of Word here
13 For simplicity, we do not give here a formal definition of what must an XML tag name be.

Conference RIAO2007, Pittsburgh PA, U.S.A. May 30-June 1, 2007 - Copyright C.I.D. Paris, France

StartTag ::= ‘<’
EndTag ::= ‘</’
CloseTag ::= ‘>’
CloseTagNoBody ::= ‘/>’
Equals ::= ‘=’
Greater ::= ‘.gt.’
GreaterEqual ::= ‘.ge.’
Less ::= ‘.lt.’
LessEqual ::= ‘.le.’
Space ::= ‘ ‘ (‘ ‘)*
Quote ::= ‘ " ‘

Conference RIAO2007, Pittsburgh PA, U.S.A. May 30-June 1, 2007 - Copyright C.I.D. Paris, France

